Brief Communications

NMR study of mono- and dilithium derivatives of alkyl and arylstannanes

P. A. Chugunov, N. A. Troitskii, K. S. Nosov, M. P. Egorov, * and O. M. Nefedov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.

Element-centered mono- and dianions of alkyl- and arylstannanes were studied by NMR spectroscopy. The 13 C and 119 Sn NMR chemical shifts for the dianions R_2 SnLi₂ (R = Ph, Et) were measured for the first time.

Key words: anions, dianions, stannanes, ¹³C and ¹¹⁹Sn NMR.

High-resolution NMR spectroscopy is an important tool to study the structure of element-centered anions in solutions. A number of recent publications^{1–4} are devoted to ¹³C and ¹¹⁹Sn NMR studies of tin-centered monoanions; a communication⁵ reports measurement of the ¹¹⁹Sn chemical shift of the stannol dianion. Nevertheless, alkyl and aryl-substituted tin-centered geminal dianions have not been studied by NMR as yet. The purpose of our work was to study these anions by NMR spectroscopy.

Mono- and dilithium derivatives of organylstannanes were generated by reducing the corresponding halostannanes with metallic lithium under sonication directly in an NMR tube.

$$R_n SnX_{4-n} + 2(4-n) Li \longrightarrow R_n SnLi_{4-n} + (4-n) LiX$$

 $n = 1, 2$

This procedure has long been known and used in classical works to generate Me₂SnNa₂,⁶ Ph₂SnNa₂,⁷ and Ph₂SnLi₂.⁸

The chemical shifts observed in the ¹¹⁹Sn and ¹³C NMR spectra of the compounds R₃SnLi, R₂SnLi₂ and the starting halides are listed in Table 1. The assignment of the ¹³C NMR spectra of lithium- and halogen-substituted arylstannanes is based on the relative intensity of the signals and on the spin-spin coupling constant ⁿJ(SnC) for the signal satellites, because the vicinal spin-spin coupling constant is greater than the geminal constant.

On passing from Et_3SnCl to Et_3SnLi and from Et_2SnCl_2 to Et_2SnLi_2 , the ¹¹⁹Sn signals shift upfield ($\Delta\delta(^{119}Sn)$) are -195 and -189, respectively). In both cases, this attests to an increase in the negative charge on the tin atom. In turn, on passing from Ph_2SnCl_2

Com- pound			$J/{ m Hz}$					
	¹¹⁹ Sn			13	_			
		C^{α}	C^{β}	C_{ipso}	Cortho	C_{meta}	C_{para}	
Et ₃ SnCl	+103	10.38	10.37					${}^{1}J({}^{119}Sn, {}^{13}C_{\alpha}) = 300,$ ${}^{1}J({}^{117}Sn, {}^{13}C_{\alpha}) = 286,$ ${}^{2}J({}^{119}Sn, {}^{13}C_{\beta}) = 32$
Et ₂ SnCl ₂	+9	22.58	10.02					${}^{1}J({}^{119}\mathrm{Sn}, {}^{13}\mathrm{C}_{\alpha}) = 586,$ ${}^{1}J({}^{117}\mathrm{Sn}, {}^{13}\mathrm{C}_{\alpha}) = 560,$ ${}^{2}J({}^{119}\mathrm{Sn}, {}^{13}\mathrm{C}_{\beta}) = 50,$ ${}^{1}J({}^{119}\mathrm{Sn}, {}^{13}\mathrm{C}_{jpso}) = 650$
Ph ₃ SnCl	-105			140.56	136.97	129.45	130.59	${}^{1}J({}^{117}Sn, {}^{13}C_{ipso}) = 682,$ ${}^{2}J({}^{119}Sn, {}^{13}C_{ortho}) = 47.6,$ ${}^{2}J({}^{119}Sn, {}^{13}C_{meta}) = 65.5,$ ${}^{4}J({}^{119}Sn, {}^{13}C_{para}) = 13.5,$ ${}^{2}J({}^{119}Sn, {}^{13}C_{ortho}) = 61$
Ph ₂ SnI ₂	-290			138.44	135.26	129.73	131.57	$^{3}J(^{119}Sn, ^{13}C_{meta}) = 81,$ $^{4}J(^{119}Sn, ^{13}C_{para}) = 17,$ $^{1}J(^{119}Sn, ^{13}C_{\alpha}) = 124$
Et ₃ SnLi Et ₂ SnLi ₂	-92 -180	18.62 15.91	22.08 3.12					${}^{2}J({}^{119}Sn, {}^{13}C_{\beta}) = 32$ ${}^{2}J({}^{119}Sn, {}^{13}C_{ortho}) = 50.3$
Ph ₃ SnLi Ph ₂ SnLi ₂	-105 -103			166.87 140.74	137.94 139.11	125.83 126.45	122.93 123.79	${}^{1}J({}^{119}Sn, {}^{6}Li) = 282$ ${}^{1}J({}^{119}Sn, {}^{13}C_{ortho}) = 52.9$

Table 1. ¹¹⁹Sn and ¹³C NMR chemical shifts of R₃SnLi, R₂SnLi₂, and the starting halides

Table 2. Changes in the 119 Sn and 13 C NMR chemical shifts upon the formation of Ph_nSnLi_{4-n} from the corresponding halides Ph_nSnCl_{4-n}

Ph_nSnLi_{4-n}	$\Delta\delta \left(R_{n}SnCl_{4-n} \to R_{n}SnLi_{4-n} \right)$										
¹¹⁹ Sn			¹³ C								
		C^{α}	C^{β}	C_{ipso}	$C_{\it ortho}$	C_{meta}	C_{para}				
Et ₂ SnLi ₂	-189	8.24	10.37								
Et ₃ SnLi	-195	-6.67	-6.9								
Ph ₃ SnLi	-0			2.3	3.85	-3.28	-7.78				
Ph ₂ SnLi ₂	-58^{a}			26.31	0.97	7 -3.62	-7.66				

 $^{^{}a} \delta^{119} \text{Sn}(\text{Ph}_{2} \text{SnCl}_{2}) = -45.10$

 $(\delta(^{119}Sn)=-32$) to the corresponding Ph_2SnLi_2 dianion, the upfied shift of the ^{119}Sn resonance is $\Delta\delta=-58$, whereas upon the formation of the Ph_3SnLi anion from the chloride Ph_3SnCl , the tin chemical shift almost does not change. The similarity of the ^{119}Sn chemical shifts for Ph_3SnLi and Ph_2SnLi_2 may be indicative of the fact that only one Sn-Li bond of the latter molecule dissociates in a THF solution to give the Ph_2SnLi^- anion.

It is known from published data¹ that in the series of aryl-substituted organoelement compounds, transition from halo-derivatives to compounds with the E—M bond (M is an alkali metal) is accompanied by a decrease in the shielding of the C_{ipso} and C_{ortho} atoms and an increase in the shielding of the C_{meta} and C_{para} atoms. The change in the 13 C chemical shifts on going from Ph_2SnI_2 to Ph_2SnI_2

fully corresponds to these features. The changes in the chemical shifts point to π -polarization of the phenyl substituents and to the lack of resonance stabilization. Thus, there is no significant negative charge delocalization over the aryl substituents in Ph₂SnLi₂ or Ph₃SnLi.

Experimental

All experiments were carried out under dry argon. Commercial chemicals purified additionally by distillation or recrystallization were used. Diphenyldiiodostannane Ph_2SnI_2 was synthesized by a known procedure. 11 Prior to use, THF-d $_8$ was refluxed over sodium benzophenone ketyl and distilled over argon. ^{13}C and ^{119}Sn NMR spectra were recorded on Bruker WM-250 and Bruker DRX-500 spectrometers.

Preparation of compounds $R_n \text{SnLi}_{4-n}$ (n=2,3) (general procedures). $R_n \text{SnX}_{4-n}$ (n=2,3) (0.00022 mol) and finely cut lithium (0.00053 mol; or 0.0011 mol for dianions) were placed in an NMR tube and 0.5 mL of anhydrous THF-d₈ was added. The reaction mixture was sonicated for 10 h and then the NMR spectrum was recorded.

This work was supported by the Russian Foundation for Basic Research (Project No. 02-03-32148).

References

- U. Edlung, T. Lejon, P. Pyykko, T. K. Venkatachalam, and E. Buncel, *J. Am. Chem. Soc.*, 1987, 109, 5982.
- 2. P. B. Hitchcock, M. F. Lappert, G. A. Lawless, and B. Royo, J. Chem. Soc., Chem. Commun., 1993, 554.
- 3. H. J. Reich, J. P. Borst, and R. R. Dykstra, *Organometallics*, 1994, 13, 1.

- 4. U. Englich, U. Hermann, I. Prass, T. Schollmeier, K. Ruhlandt-Senge, and F. Uhlig, *J. Organomet. Chem.*, 2002, **646**, 271.
- M. Saito, R. Haga, and M. Yoshioka, *Chem. Commun.*, 2002, 1002.
- C. A. Kraus and W. N. Greer, J. Am. Chem. Soc., 1925, 47, 2567.
- R. F. Chambers and P. C. Scherer, *J. Am. Chem. Soc.*, 1926, 48, 1054.
- 8. H. Schumann, K. F. Thom, and M. Schmidt, *J. Organomet. Chem.*, 1964, **2**, 97.
- 9. I. Wharf and M. G. Simard, J. Organomet. Chem., 1997, 532, 1.
- R. K. Harris, J. D. Kennedy, and W. McFarlane, in *NMR and Periodic Table*, Eds R. K. Harris and B. E. Mann, Academic Press, London, 1978, p. 342.
- R. H. Bullard and W. B. Robinson, J. Am. Chem. Soc., 1927, 49, 1368.

Received September 14, 2004